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A hierarchy of systems of non-linear equations 
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Institut fur Theoretische Physik, Universitat Wien, A-1090 Wien, Austria 

Received 25 October 1985 

Abstract. Imposing isospectral invariance for the one-dimensional Dirac operator yields 
an infinite hierarchy of systems of chiral invariant non-linear partial differential equations. 
The same system is obtained through a Lax pair construction and finally a formulation in 
terms of Kac-Moody generators is given. 

1. Introduction 

The first successful solution of the Kdv equation led to the development of the inverse 
scattering transform method. With the help of the construction of Lax pairs or following 
the AKNS ideas it was possible to generate a large number of solvable non-linear partial 
differential equations [l, 21. The next big step by Zhakarov and Shabat [3] showed 
the connection of the inverse method to the Riemann transform method [4]. 

Already at the beginning of the development of the Kdv equation it was realised 
that the eigenvalues of the associated Schrodinger operator are left invariant if the 
potential evolves according to the non-linear equation. Vice versa, one may generate 
an infinite number of higher-order Kdv equations by imposing isospectral invariance 
to the Schrodinger operator. 

In this paper we start from the one-dimensional most general self-adjoint Dirac 
operator on the full line and ask for systems of non-linear evolution equations for the 
potentials such that the spectrum of the Dirac operator is left invariant. A simple 
method, using Feynman-Hellman theorem and an expansion in the spectral parameter, 
allows us to characterise these systems iteratively (theorem 1). Generalisations of the 
non-linear Schrodinger equation and of the modified Kdv equation belong to them. 
Next we observe that the same systems can be generated following the AKNS scheme. 
We show that the action of gauge and chiral transformations for the Dirac operator 
extend naturally to the non-linear systems. Finally, we remark that a third formulation 
in terms of generators of a Kac-Moody algebra exists. The use of such infinite algebras 
may shed new light onto infinite-dimensional integrable Hamiltonian systems. 

All these systems can be solved in a certain gauge by following standard inverse 
scattering transform methods. Soliton solutions for the modified Kdv equation and 
the corresponding N = 3 system (see equation (19)) have been studied recently in 
connection with a solid state physics model [5-71. 

2. Isospectral flow for the Dirac equation 

Our first derivation of the infinite hierarchy of non-linear systems follows from imposing 
isospectral invariance for the one-dimensional Dirac operator with potentials a,, c1 
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and U = ( u l ,  u2) :  

-iH(d, - ia, + E .  U)$ = ( A  - c1)+ (1) 

[ H, E 2 ]  = *2iE1 [ E 2 ,  E 2 ] = 0  [ E ' ,  E'] = 2iH (2) 

where E - U = E'ul + E2u2  and H, E L  and E' denote generators of sl(2, C)  satisfying 
1 2 1 1  

which may be expressed by Pauli matrices. We assume that all four potentials and 
the spinor $ depend on an additional parameter which we may call time t. 

For the discrete spectrum of (1) we impose the condition that it remains time 
independent. Let E be an eigenvalue with eigenfunction $. From the Feynman- 
Hellman theorem we deduce that 

where we introduced densities 

I"  = -$'H$ I' = $+$ I"  = -i$'HE+. (4) 

Now we ask for a time evolution of the potentials such that at& = 0. The ansatz for 
W 

a,& = d x  dX(a2I"  + c ~ I ' +  b .  I " )  ( 5 )  L 
as a total differential leads, after using (1) and comparing (3 )  with ( 5 ) ,  to the relations 

ata1 = aXa2 

a,cl = axc2 - 2ib - u2u 

a,u = -2ic,a2u + a,b + 2i( c1 - ~ ) a , b  

( 6 )  

where the Pauli matrix u2 enters via the structure constants of sl(2, C). Next we expand 
a 2 ,  b and c2 in powers of E :  

where the expansion coefficients ay ' ,  b'"' and can) depend on all potentials and their 
derivatives. Introducing (7) into (6) leads to the recurrence relations 

l S n s N  a a ( " ) -  
x 2 -0  

O S n < N  (8) 2b'"' = -2c:"+'1u - ia D /)("+I) 
2 x  

b ( N )  = 0 

axckN) = o axcP'  = 2ib'"' - crzu l S n < N  

together with time evolution equations for the potentials: 

a , ~ ,  =a,&') 

arcl = a,c:"' - 2ib''' - U2 0 

D,u = D,b'O) 

where D, and D, denote covariant derivatives 

D, = 8, + 2ia2c~o)  0, = a, + 2ia2cl, 
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Remark. One of the fields c, or cia) may be chosen arbitrarily as a function of t and 
x. The same holds for a ,  and ai"; these two even obey evolution equations which 
decouple completely from the other equations in (9). 

Remark on gauge invariance. It was realised some time ago that certain non-linear 
equations are gauge equivalent to each other [8]. 

Here we note that the invariance of the Dirac equation (1) under gauge and chiral 
transformations 

+ +. exp(iA - iHx)+ U -+ exp( -2ia2x)u 

a ,  + a, + a,A c1 +. C, + a d  
implies gauge invariance of (9). Under the transformation (1 1) together with 

a$')+ a y ) + a , A  cp)  -+ c y )  + a& (12) 

the systems (8) and (9) remain invariant. Clearly, only the chiral part of the transforma- 
tion of + has non-trivial consequences for the system. 

In an attempt to generate systems of the hierarchy from equation (8) one fixes N and 
is faced with the problem of integrating the equation for axe$") for n = 
N - 1, N - 2,  . . . ,1. It turns out that the RHS for this quantity is always a total derivative 
which allows us to formulate the following theorem. 

Theorem 1 .  The iteration procedure (equations (8) and (9)) determines systems of 
non-linear equations for the potentials of the Dirac equation leaving its spectrum 
invariant. All expansion coefficients in equations (7) are polynomials in the potentials 
and their derivatives. 

ProoJ: We will show by complete induction that a,cY) is a total derivative for all n;  
without loss of generality we put 

C y )  = 1 b"-') = -0. 

Suppose the assertion is true for a&), n + 1 ej e N ;  we will show that ax$) is a 
total derivative in two steps. 

( a )  b'") . u2b(r) = b(m-1)  . a2b(r+1) +total derivative 

which follows by using the second and third line of equation (8) twice and by 'partial 
integration'. 

( b )  From ( a )  we obtain the chain 

a x 2  & ( r )  = 2ib'N-I) - azb(") = 2ib"-" - a2b("+l)+total  derivative = . . . 
- - 2ib"-"-" a2b("+")+ total derivative = . . . , 

Next we distinguish two cases: if N + n - 1 = 2p is even we arrive at b(p) - aZb(P)  which 
is zero; if iV+ n - 1 = 2q - 1 is odd, we arrive at b(4 )  uzb(4-1) which can be seen from 
( a )  to be a total differential too. 
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3. The AKNS scheme-Lax pair construction 

The second way to obtain the above-mentioned hierarchy follows the AKNS scheme, 
which is similar to construction of a Lax pair. Multiplying (1) by iH from the left yields 

ax+ = X+ 

a,+ = T+. (14) 

X = iH( A - c,)  + ia, - E - U.  (13) 

The time evolution should be given by a T operator according to 

(13) and (14) are integrable iff X and T fulfil 

[a, - X, a ,  - TI = 0. (15) 

Next, expanding T in a power series in A :  

N 
T =  A"(ia:"'-iHc!j"'-E. b'"') 

n =O 

yields, after inserting (13) and (16) into (15), systems (8) and (9). 

Remark. Special examples of the hierarchy have been treated in the literature. We 
may omit a, and ay' since they decouple from the system. 

For N = 1 we obtain as evolution equations 

a,c, = a,c:O) D,u = D,u. (17) 

A suitable gauge transformation allows us to put c, = cy'  = 0. 
For N = 2 a generalisation of the non-linear Schrodinger equation is obtained: 

atcl =a,c:O)-a.(u U )  D,u = ia,D:u. (18) 

Taking c1 = 0 and cia' = U U yields the standard form [9, 101. 
For N = 3 we obtain a generalisation of a coupled system of M K d v  equations 

a,c, = -%a,( U a 2 ~ , u >  

D,u = 20,( U (  U U ) )  - D',u 

which goes over to the standard form if cia' = 2iu . aza,t) [7]. 

Remark. Expansions like (16) also work for complex potentials. Real ones correspond 
to self-adjoint Dirac operators, non-real ones to the non-self-adjoint case. For the 
non-linear Schrodinger equation real potentials correspond to repulsion and pure 
imaginary ones to attraction [9, 101. 

4. Lax pairs in terms of Kac-Moody generators 

Recently it has been realised that infinite-dimensional integrable systems are related 
to infinite-dimensional Lie algebras [ l l ,  121. For certain systems such algebras have 
been identified as describing the symmetry of the system [13, 141. In particular, the 
connection of Toda lattice systems to such algebras has been worked out. 
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Here we show that an expansion of Lax pairs in terms of generators of a Kac-Moody 
algebra leads to the hierarchy (8)  and (9) too. We start from d, and d2 expressed in 
terms of an element g( t, x)  belonging to the Kac-Moody group 

,"PI = -8(axg-') dz= -g(J,g-'). 

Consistency for (20) implies that 

[Jx-d1,ar-d2]=o.  (21) 

Next we expand d, and d, in terms of generators. We identify h"H, h"E' and A"E2 
in equations (13) and (16) with generators H,,, E :  and E: which belong to the algebra 
(for a review see [15]): 

[ H m ,  H n I = O  [Em, En1 = O  
1 2 

[EL, E2,]=2iHm+, [H,, E:] = i2iEA+, 

and expand d, and d2 as 

dl = i H ,  + i 1 a, - iHoc, - Eo - U 
,"P,=ilaY'- (iH,,c$'"+E; b'"') .  

N 

n=O 

Inserting (23) into (21) again yields systems ( 8 )  and (9). 

Remark. Since in expansion equation (23) only generators H, and E,  with n 2 0 occur, 
one obtains the same system whether one uses a central extension of the algebra or not. 

Remark. Gauge transformations can now be expressed as 

J,-dpp,(f, X)-+go(t,x)(a,-~,(t, x))go'(t,x) 
1 2  I 2  

(24) 
go(t, x)=exp( i lA( t ,x ) - iH ,~ ( t ,x ) )  

where {go} form an Abelian subgroup of the Kac-Moody group. 

Remark. Recently it has been realised that various realisations of elements of Kac- 
Moody algebras may also be of use for solving non-linear equations [ l l ,  121. A 
particular simple realisation starts from creation and annihilation operators A:,  A:', 
r = l , 2 , n ~ Z ,  

{ A ; ,  A i }  = 0 { A t ,  A i }  = 6 "S,, 

where finally 
1 1 

H, = A;-,HA, E ~ = C  A;-,E'A, 
4 4 

fulfil the algebra (22). For the quantum mechanical vacuum 10) defined by AiIO) = 0 
V q  H,, E!,, and E ;  annihilate it for all m; in addition d, and d2 leave the one-particle 
subspace invariant. 
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Remark. More interesting is the realisation where one takes the filled Dirac sea vacuum 
(0) with A',lO) = 0 for m 2 0 and A',tlO) = 0 for m < 0; normal ordering of operators of 
(26) yields a central extension of the algebra (22) [12]. Since d l  and d2 again leave 
the one-particle subspace of the Hilbert space, built on IO), invariant, we may write 

a x l + )  = dlI@) &I+) = a,/@) (27) 

and expand 

Particle and antiparticle subspaces are separately left invariant so we may consider 
only the former. From (27) we get 

dxfp:=iHfp:.+,+(ia, - iHc , -E* U)+: V n 2 0 .  (29) 

Therefore if we put f p l  equal to a spinor + ( A ;  t ,  x) which satisfies (13) we obtain 

fp; = A n +  V n  20. (30) 

With that choice we obtain for d, and d2 

5. Conclusion 

In this paper we have indicated three ways to obtain a hierarchy of non-linear equations 
which generalise well known systems of the literature. The most promising approach 
seems to us to be the connection to infinite-dimensional Lie algebras and we expect 
to obtain further results from it. 

Let us finally mention that, besides the conventional Hamiltonian formulation 
[9, 101 where an ultralocal symplectic form is taken, there also exists an approach 
where a non-ultralocal form is taken and the evolution equations (9) for the Nth 
system are given by 

It is not difficult to construct the appropriate Hamiltonian RN. In a gauge cp) = 0 
the covariant derivative D, becomes the ordinary one. Further elaboration on these 
systems will be published elsewhere. 
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